Acids

1. Which equation does not represent a neutralisation reaction?
```
A Zn+2HCl }->\mp@subsup{\textrm{ZnCl}}{2}{}+\mp@subsup{\textrm{H}}{2}{
B 2NH3}+\mp@subsup{\textrm{H}}{2}{}\mp@subsup{\textrm{SO}}{4}{}->(\mp@subsup{\textrm{NH}}{4}{}\mp@subsup{)}{2}{}\mp@subsup{\textrm{SO}}{4}{
C Na2CO}+2\mp@subsup{\textrm{CH}}{3}{}\textrm{COOH}->2\mp@subsup{\textrm{CH}}{3}{}\textrm{COONa}+\mp@subsup{\textrm{CO}}{2}{}+\mp@subsup{\textrm{H}}{2}{}\textrm{O
D CuO + 2HNO
```

Your answer
\square
2. The burette readings from a titration are shown below.

Final reading $/ \mathrm{cm}^{3}$	24.95
Initial reading $/ \mathrm{cm}^{3}$	5.00

The burette used has an uncertainty of $\pm 0.05 \mathrm{~cm}^{3}$ in each reading. What is the percentage uncertainty of the resulting titre?

A 0.20%
B 0.25%
C 0.45%
D 0.50%

3. Which equation is not a neutralisation reaction?

A $\quad \mathrm{Ca}(\mathrm{s})+2 \mathrm{HC} /(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
B $\quad \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
C $\quad \mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{KNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})$
D $\quad \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4} \mathrm{C} /(\mathrm{aq})$
Your answer \square
4. The equation for the reaction of aqueous phosphoric (V) acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$, with aqueous sodium hydroxide, $\mathrm{NaOH}(\mathrm{aq})$ is shown below.

$$
\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

$25.0 \mathrm{~cm}^{3}$ of a $0.200 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$ is titrated with $0.600 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq})$
Which statement is correct?
A. The end point occurs when $25.00 \mathrm{~cm}^{3}$ of $\mathrm{NaOH}(\mathrm{aq})$ has been added.
B. The end point occurs when $75.00 \mathrm{~cm}^{3}$ of $\mathrm{NaOH}(\mathrm{aq})$ has been added.
C. After titration the final solution contains 0.0150 mol of $\mathrm{Na}_{3} \mathrm{PO}_{4}$.
D. After titration the final solution contains 0.0150 mol of $\mathrm{H}_{2} \mathrm{O}$.

Your answer
5. A student prepares a standard solution and carries out a titration.

The standard solution is placed in the burette.

Which of the following would result in a titre that is larger than it should be?
1: Water is added to completely fill the volumetric flask, rather than to the graduation line.
2: The conical flask is washed out with water before carrying out each titration.
3: The pipette is washed out with water before carrying out each titration.
A. 1, 2 and 3
B. Only 1 and 2
C. Only 2 and 3
D. Only 1

Your answer \qquad
6. Which reagent would exactly neutralise $100 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$?
A. $\quad 0.100 \mathrm{~mol} \mathrm{Al}(\mathrm{OH})_{3}$
B. $\quad 0.100 \mathrm{~mol} \mathrm{NH}_{3}$
C. $0.100 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}$
D. 0.100 mol NaOH
\square

Mark scheme - Acids (MCQ)

| Question | | Answer/Indicative content | | Marks | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

